
RESEARCH ARTICLE
10.1002/2016WR020133

A method for preferential selection of dates in the Schaake
shuffle approach to constructing spatiotemporal forecast fields
of temperature and precipitation
Michael Scheuerer1,2 , Thomas M. Hamill2, Brett Whitin3, Minxue He4, and Arthur Henkel3

1University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA, 2NOAA/
ESRL, Physical Sciences Division, Boulder, Colorado, USA, 3NOAA/NWS, California Nevada River Forecast Center,
Sacramento, California, USA, 4California Department of Water Resources, Hydrology Branch, Sacramento, California, USA

Abstract Hydrological forecasts strongly rely on predictions of precipitation amounts and temperature
as meteorological forcings for hydrological models. Ensemble weather predictions provide a number of dif-
ferent scenarios that reflect the uncertainty about these meteorological inputs, but these are often biased
and under-dispersive, and therefore require statistical postprocessing. In addition to correcting the marginal
distributions of the two weather variables, postprocessing methods must reconstruct their spatial, temporal,
and intervariable dependence in order to generate physically realistic forecast trajectories that can be used
as forcings of hydrological streamflow forecast models. For many years, a sample reordering method
referred to as ‘‘Schaake shuffle’’ has been used successfully to address this multivariate aspect of forecast
distributions by using historical observation trajectories as multivariate ‘‘dependence templates.’’ This paper
proposes a variant of the Schaake shuffle, in which the historical dates are selected such that the marginal
distributions of the corresponding observation trajectories are similar to the forecast marginal distributions,
thus making it more likely that spatial and temporal gradients are preserved during the reordering proce-
dure. This new approach is demonstrated with temperature and precipitation forecasts over four river
basins in California, and it is shown to improve upon the standard Schaake shuffle both with respect to veri-
fication metrics applied to the forcings, and verification metrics applied to the resulting streamflow
predictions.

1. Introduction

Hydrological forecasts are valuable for a range of applications such as flood control, water supply, or envi-
ronmental stream flow regulation. A probabilistic forecasting framework in which the associated uncertain-
ty is represented and communicated can improve decision-making [Roulin, 2007; Verkade and Werner,
2011], and requires that both uncertainty about initial conditions and parameters of the hydrological mod-
el, and uncertainty about the meteorological inputs are quantified correctly. The latter is typically
addressed by meteorological ensemble prediction systems (EPSs), which aim to approximate the probabili-
ty distribution of the forcing data by a finite number of scenarios (an overview over ensemble use in flood
forecasting is given by Cloke and Pappenberger [2009]). However, despite constant improvements to those
meteorological EPSs over the last two decades, raw ensemble forecasts of surface weather variables are
still unreliable [e.g., Park et al., 2008], and statistical postprocessing is required to remove forecast biases
and ensure adequate representation of forecast uncertainty. Since hydrological models are sensitive to the
space-time covariability of the forcing forecasts, statistical postprocessing (throughout this article the term
’postprocessing’ is used to denote the statistical adjustment of ensemble weather predictions based on pri-
or discrepancies between forecasts and observations; in the lingo of hydrologists this process is called ‘pre-
processing’) needs to model the joint distribution of meteorological inputs at all locations over the river
basin of interest, all forecast lead times, and all relevant weather variables. In other words, statistical post-
processing should generate physically realistic, unbiased spatiotemporal forecast fields (we refer to such a
spatiotemporal field as ‘‘trajectory’’) which adequately represent the forecast uncertainty.

Typically, this is done in two steps. First, a statistical model which yields reliable predictive marginal distribu-
tion for all weather variables of interest, separately for each location and forecast lead time is set up.
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Subsequently, spatial, temporal, and intervariable dependence is addressed, with the predominant method
in hydrological applications being the ‘‘Schaake shuffle’’ [Clark et al., 2004], which uses historical, observed
trajectories as a multivariate ‘‘dependence template’’ onto which the univariate samples from the postpro-
cessed predictive distributions are assembled in a way that duplicates the pairwise rank correlation struc-
ture in the historical ensemble [Wilks, 2015]. The Schaake shuffle technique can be used independently of
how the marginal forecast distributions were obtained, and it has been applied successfully in numerous
studies (and various time scales) in order to construct spatiotemporal forecast fields that adequately repre-
sent the multivariate forecast distribution [Schaake et al., 2007; Wu et al., 2011; Verkade et al., 2013; Robert-
son et al., 2013; Vrac and Friederichs, 2015]. Despite its success, the Schaake shuffle approach comes with a
caveat. Clark et al. [2004] themselves note that ‘‘it assumes stationarity in the spatiotemporal correlation
structure’’ and it ‘‘will not preserve the spatial gradients in precipitation and temperature fields for individual
forecasts.’’ The stationarity assumption implies in particular that spatiotemporal rank correlations are state-
independent, i.e., for example, they are the same for low and high levels of precipitation. It can happen that
historical observation trajectories associated with relatively low precipitation amounts are remapped to
Schaake shuffle ensemble values with much higher values and vice versa, as illustrated in Figure 1. The
postprocessed, marginal forecast distributions suggest very dry conditions during the first 66 h after fore-
cast initialization, followed by a period of elevated levels of precipitation. The Schaake shuffle imposes the
rank order of historical observations, which have values representative of climatology, on near-zero precipi-
tation forecasts during the first 66 h, and on forecast values well above climatology during the 72–120 h
forecast lead time period. It is not clear if the resulting forecast trajectories are still physically realistic,
despite their foundation in observed trajectories. The idea of Clark et al. [2004] to address this by ‘‘preferen-
tially select(ing) dates from the historical record that resemble forecasted atmospheric conditions and use
the spatial correlation structure from this subset of dates to reconstruct the spatial variability for a specific
forecast’’ has recently been implemented by Schefzik [2016], who defines a similarity-criterion for the
raw ensemble forecasts and applies the Schaake shuffle technique to the subset of historical dates where
the ensemble forecasts resemble those for the desired forecast date. His data example with surface
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Figure 1. Illustration of the Schaake shuffle technique for constructing forecast trajectories of 6 h mean areal precipitation (MAP) amounts
at Lake Mendocino subbasin. Predictive marginal distributions for each forecast lead time (initialization time: 9 January 2010, 00 UTC) are
represented by quantile-based samples of size 11 (blue diamonds). (a) Historical observation trajectories from the same date in the previ-
ous 11 years. (b) The forecast trajectories obtained by reordering the marginal forecast samples at each lead time in the same way as the
historical observation trajectories.
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temperature forecasts at several locations in Central Europe shows that this similarity-based implementa-
tion of the Schaake shuffle can improve the representation of the multivariate forecast distributions com-
pared to the standard Schaake shuffle. The similarity-criterion suggested by Schefzik [2016] does not
account for temporal correlation, but a corresponding adjustment is straightforward. In the typical setting
encountered in hydrological applications, however, Schefzik’s variant of the Schaake shuffle has two
drawbacks:

1. Since the similarity criterion is based on the ensemble forecasts, it can only be defined for historical dates
for which reforecasts are available. Even if reforecast datasets are available, they might not go back as far
as the observation record. Or, they may be configured such as to skip dates, and those dates can then
not be used in the Schaake shuffle.

2. Forecast skill typically decreases with increasing lead time, and forecast fields at longer lead times often
have little resemblance with the observed fields, so that preferential selection of dates becomes less and
less meaningful. If the similarity-criterion is extended to also address temporal correlation, longer lead
times should be deemphasized, requiring some ad hoc weighting strategy to do so.

In this paper, we propose an alternative strategy for preferential selection of dates in the Schaake shuffle
approach that can leverage the full observation record independent of reforecast availability. Our method
chooses the historical dates in such a way that the marginal distributions of the observation trajectories
resemble those of the postprocessed forecast distributions as illustrated in Figure 2. The 6 h precipitation
amounts corresponding to the historical observations are now similar to the postprocessed, predictive sam-
ples, and imposing the rank order of the historical observations is therefore more likely to preserve spatial
and temporal gradients, and yield physically realistic forecast trajectories. Since our approach chooses the
historical dates based on the full, postprocessed predictive distributions, it automatically emphasizes loca-
tions and lead times where forecasts are skillful and forecast distributions differ significantly from the clima-
tological distribution.

The forecast and observation data used in this study is presented in section 2, while sections 3 and 4 pro-
vide the details on the methods used for marginal calibration on the one hand and multivariate depen-
dence modeling on the other hand. Section 5 compares the standard Schaake shuffle approach, the variant
of it proposed in this paper, and the ensemble copula coupling technique [Schefzik et al., 2013], by verifying
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Figure 2. Same as Figure 1 but with historical dates selected as suggested in section 4.

Water Resources Research 10.1002/2016WR020133

SCHEUERER ET AL. SELECTING DATES IN THE SCHAAKE SHUFFLE 3031



the forcing variables generated with both techniques. Subsequently, in section 6, results are presented
which evaluate in how far the improvement of these forcings entails an improvement of predicted stream-
flow. Section 7 finally summarizes the results and discusses applications and limitations of the approach
presented here.

2. Study Basins and Data Sets

The meteorological forcings considered here are 6 h surface temperature means and 6 h precipitation accu-
mulations during the period from January 1985 to September 2010. Forecast data were obtained from the
second-generation Global Ensemble Forecast System (GEFS) reforecast data set [Hamill et al., 2013], which
consists of 11 ensemble member forecasts on a Gaussian grid at �1/28 resolution. All forecasts were initial-
ized at 00 UTC, and forecast lead times up to 15 days were considered for this study. Those forecasts are
postprocessed with and verified against station-based observation data over four different basins in Califor-
nia: Russian River (7 subbasins), Eel River (11 subbasins), American River (2 subbasins), and Merced River (5
subbasins). While the four basins were processed separately, the mean areal temperature (MAT) and mean
areal precipitation (MAP) values associated with the respective subbasins and the 15 3 4 forecast accumula-
tion periods constitute the multivariate quantity for which a forecast distribution is sought. MAT and MAP
observations are available for the period from October 1948 to September 2010, and while only the subper-
iod overlapping with the period of the reforecast data set can be used for model fitting and verification, the
full observation record is used to create the Schaake shuffle ranks. Unlike the forecasts, observations are
recorded in local time (PST/PDT) which lags behind UTC by 7 h during the warm season and 8 h during the
cool season. The resulting challenge that the respective 6 h accumulation periods of forecasts and observa-
tion never fully overlap is dealt with by our marginal statistical postprocessing methods as discussed in the
subsequent section. Finally, daily United States Geological Survey (USGS) archived streamflow data were
obtained for Ukiah (Russian River Basin). Daily full natural flow data at Coyote Dam (Lake Mendocino, Rus-
sian River Basin) were derived from hourly inflow data obtained from the US Army Corps of Engineers, Sac-
ramento District (USACE-SPK) and daily USGS Eel River diverted flows.

Figure 3 shows the locations of the four basins, and gives an idea of the topography in California. The Amer-
ican River and Merced River basins are located in the Sierra Nevada with area-averaged altitudes of 1250 m
and 2800 m, respectively. Streamflow in the American River is about two-thirds wintertime rainfall and
snowmelt runoff and less than one-third springtime snowmelt runoff, while the higher and cooler Merced
River is dominated by springtime snowmelt runoff [Dettinger et al., 2014]. The Russian River and Eel River
basins are coastal basins, and snowmelt runoff generally plays a less important role. In order to give an idea
of the spatial variability of MAT and MAP within each of the four basins, Figure 3 further depicts the mean
absolute difference (MD, a measure of dispersion) statistics of these quantities across the respective subba-
sins. Two different ways of calculating/aggregating these statistics are considered:

1. In order to measure the climatological, spatial variability in each basin, we calculate the MD of average
MAT/MAP over all days of the respective month and all years from 1985 to 2010.

2. In order to measure the spatial variability on the 6 h time scale, we calculate the MD of 6 h MAT/MAP (for
MAT, anomalies from the climatological average are considered) and average those 6 h MDs over all
days of the respective month and all years from 1985 to 2010.

All MD statistics are calculated separately for each of the four 6 h periods of the day, but the plots in Figure
3 depict average statistics over those four 6 h periods. The American River and Merced River basins have a
rather complex topography; the climatological spatial variability of the corresponding MATs (which is large-
ly due to differences in elevation) is large compared to the spatial variability of the 6 h anomalies from the
climatological average. The spatial variability of climatological MAT averages across the Russian River subba-
sins, on the contrary, is lower than the variability of 6 h anomalies, which entails that spatial MAT gradients
are relatively more dependent on the particular atmospheric situation. The MAP mean absolute differ-
ences reflect the annual cycle of precipitation over California, which is characterized by very dry summers
and precipitation mainly occurring during the cool season. The two Sierra basins, especially Merced River,
are relatively small, and spatial differences of MAP between the different subbasins are moderate com-
pared to those observed in the coastal basins. These basin characteristics may affect the effectiveness of
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the methods for modeling joint forecast distributions of MAT and MAP presented in the subsequent
sections.

3. Methods for Marginal Calibration

3.1. Mean Areal Temperature (MAT)
For postprocessing the ensemble temperature forecasts, we use a variant of the nonhomogeneous Gauss-
ian regression (NGR) [Gneiting et al., 2005] approach proposed by Scheuerer and B€uermann [2014], relating
observed temperature anomalies to ensemble mean forecast anomalies, and using the ensemble variance
as a predictor for the forecast uncertainty. Specifically, if y denotes the MAT to be predicted, �f denotes the
corresponding ensemble mean forecast, ycl and �f cl denote the respective climatological MATs at the fore-
cast time and date, and s2 denotes the ensemble variance, then a predictive Gaussian distribution for y is
defined via

yj�f ; s2 � Nðl; r2Þ; l5ycl1a � ð�f 2�f clÞ; r25b01b1s2: (1)

The climatological MATs ycl and �f cl are obtained as described by Hemri et al. [2014] by fitting a regression
model with two harmonic terms (to represent the annual cycle) to the training forecasts and observations.
The regression coefficients a; b0; b1 are obtained via CRPS minimization following Gneiting et al. [2005]. For
temperature, we deal with the incomplete overlap of forecast and observation periods by calculating, for
each 6 h observation period, a weighted average of both overlapping 6 h forecasts periods with weights
proportional to the time overlap (4:2 for PST, 5:1 for PDT). Compared to an exact overlap this smoothes the
diurnal cycle of forecast temperatures, but using different climatologies for forecasts and observations in
equation (1) restores the correct amplitude of the diurnal cycle for y. The climatological MATs ycl;�f cl are spe-
cific to each location, each time (6 h period) of the day, and each day of the year. The regression coefficients
a; b0; b1 are estimated separately for each location, each lead time period, and based on training data that
is composed specific to each month as described in section 5.

3.2. Mean Areal Precipitation Accumulations (MAP)
For postprocessing the ensemble precipitation forecasts, we largely follow the approach described by
Scheuerer and Hamill [2015a] of fitting a nonhomogeneous, nonlinear regression model to training observa-
tions and statistics of the ensemble forecasts, using censored, shifted Gamma distributions (CSGDs). Starting
from a CSGD representing the climatological distribution with mean, standard deviation, and shift

Figure 3. Location map showing the four study basins, and mean absolute difference (MD) statistics illustrating the spatial variability of MAT and MAP across the respective subbasins.
The top row depicts the MD of climatological averages, the bottom row depicts the MD on the 6 h time scale.
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parameters lcl; rcl , and dcl, predictive CSGDs are obtained by fixing d5dcl , and relating the predictive mean
and standard deviation parameters l and r to the ensemble probability of precipitation POPf , the ensemble
mean �f , and the ensemble mean difference MDf via

l5
lcl

a1
log1p expm1ða1Þ a21a3POPf 1a4

�f
�f cl

� �� �
(2)

r5b1rcl

ffiffiffiffiffiffi
l
lcl

r
1b2MDf ; (3)

where log1pðxÞ5log ð11xÞ; expm1ðxÞ5exp ðxÞ21, and �f cl is the climatological mean of �f . For details about
model fitting and a motivation of these equations we refer to Scheuerer and Hamill [2015a].

The method used here differs from Scheuerer and Hamill [2015a]—besides the slightly simpler equations for
l and r—in the way we calculate the ensemble statistics POPf ;�f , and MDf . Scheuerer and Hamill [2015a]
demonstrate that it is beneficial to augment the GEFS ensemble by adding forecasts from grid points within
a certain neighborhood of the location s of interest, thus accounting for displacement errors. The optimal
radius r of these neighborhoods increases with lead time [Scheuerer and Hamill, 2015a, their Figure 14], and
trading off forecast performance and computational efficiency we choose r51

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11te=24h

p
, where te is

the end of the lead time window in hours. In the present setup, we use a similar idea to address timing
errors by interpreting the two 6 h forecasts periods overlapping each 6 h observation period as a ‘‘temporal
neighborhood,’’ and augmenting the ensemble by considering forecasts from both overlapping forecasts
periods as predictors. Following Scheuerer and Hamill [2015a], we use an ad hoc spatial weighting scheme
which deemphasizes forecast grid points further away from the observation location s, and combine it with
the temporal weighting scheme (4:2 for PST, 5:1 for PDT) for the two overlapping forecast periods sug-
gested above for MAT. As an alternative option, we study a data-driven weighting scheme:

1. let ~f xtk be the forecast of the kth member at grid point x and lead time t, adjusted via quantile mapping
as described in Scheuerer and Hamill [2015a], section 4a,

2. compute the corresponding ensemble mean �f xt5
1

11

P11
k51

~f xtk for each x, each t, and each training date,
3. compute the root mean squared forecast errors RMSExt of each of these ensemble means when verified

against the training MAP observations at s,
4. assign weights wxt proportional to the RMSE for x and t via

wxt �
max n;sRMSEns2RMSExt

max n;sRMSEns2min n;sRMSEns
(4)

That is, the pair (x, t) in the spatiotemporal neighborhood of s with the lowest RMSE is assigned the maximal
weight, while the pair with the largest RMSE is assigned zero weight.

Our experiments show that this data-driven weighting scheme yields slightly better results than the fixed
weighting scheme. It reflects the predominant westerly flow in that the earlier of the overlapping 6 h fore-
cast periods has spatial weights more concentrated west of location s while the later period has weights
concentrated east of s (see supporting information to this paper). The climatological parameters lcl;rcl; dcl

are specific to each location, time (6 h period) of the day, and each day of the year, and the regression coef-
ficients a1; a2; a3; a4; b1; b2 and weights wxt are derived separately for each location, each lead time period,
and based on training data that is composed specific to each month.

4. Method for Modeling the Multivariate Dependence Structure

The methods described in section 3 yield reliable, predictive marginal distributions for each of the two
weather variables, each location s, and each lead time t. These distributions can be sampled—either ran-
domly, or systematically by choosing certain quantiles—and thus turned into an ensemble of any desired size
K. In this study, we use the forecast quantiles with levels ak5ðk20:5Þ=K for all k51; . . . ; K , which is a CRPS-
optimal sample of the predictive distribution [Br€ocker, 2012]. An additional step is necessary, however, to link
these individual samples in such a way that their joint probability distribution is represented adequately, and
physically realistic, spatiotemporal forecast trajectories are obtained. To reconstruct the MAT and MAP
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trajectories for a particular initialization date, the standard implementation of the Schaake shuffle proposed
by Clark et al. [2004] chooses the dates in previous years within a short window surrounding that forecast ini-
tialization date, and uses the observed trajectories subsequent to these dates as ‘‘dependence templates’’ for
the forecast trajectories to be constructed. In this process, the marginal forecast samples are reordered such
that for each weather variable, location, and lead time their rank order is the same as that of the ensemble of
historical trajectories (see Clark et al. [2004] or Wilks [2015] for a formal description and Schefzik et al. [2013]
for general mathematical framework of this reordering process). In the following, we describe a variant of the
Schaake shuffle that leaves the shuffling idea unchanged but chooses the historical dates in such a way that
the marginal distributions of the sampled observation trajectories resemble those of the postprocessed fore-
cast distributions. This way, the values of the historical trajectories that serve as ‘‘dependence templates’’ are
closer to the forecast values to which they are mapped during the shuffling procedure, so that the assumption
of state-independent spatiotemporal rank correlations that is somewhat implicit in the standard implementa-
tion of the Schaake shuffle (hereafter referred to as StSS) is substantially weakened.

The first step is to increase the pool of dates that are allowed as starting dates of the historical observation
trajectories by widening the time window surrounding the forecast initialization date. Subsequently, this
pool of candidate dates is thinned out to a subset of K historical starting dates. In order to preserve inter-
variable correlations, that subset of dates must be the same for MAT and MAP, but for reasons of computa-
tional efficiency and due to the more complex nature of spatiotemporal correlations of precipitation fields,
we let the MAT and MAP marginal distributions influence the thinning process in different ways. The MAT
based selection criterion is applied first:

1. For each location s, and each lead time t compute the 99% prediction interval (0.005-quantile and 0.995-
quantile of the predictive marginal distribution) for MAT.

2. Discard all candidate dates for which the corresponding MAT observation trajectory falls outside of more
than m of those intervals.

3. That number m is chosen such that at least N0 candidate dates are retained, where N0 is a prespecified
number larger than K.

In our examples we use this thinning criterion to bring the number of candidate dates down to approxi-
mately N05500. It is simple and computationally inexpensive, and additional experiments (not further dis-
cussed in this article) show that for MAT a more sophisticated approach yields only little further
improvement. The highly asymmetric predictive distributions of MAP, on the contrary, require a different
strategy to further reduce the remaining candidate dates from N0 to K. Denote by Ff

st the MAP forecast
cumulative distribution function (CDF) at location s and lead time t, and by FHst the empirical CDF calculated
from observation trajectories corresponding to a set H of historical dates. Our goal is to choose H such that
FHst and Ff

st are as similar as possible for all s and t, and we quantify similarity by studying the divergence
[Br€ocker, 2012; Thorarinsdottir et al., 2013] of the two distributions

DHst 5

ð
ðFHst ðxÞ2Ff

stðxÞÞ
2dx: (5)

Calculating the total divergence DHtot5
P

s;t DHst over all locations and lead times for any K-subsetH is typical-

ly computationally infeasible since there are N0
K

� �
possible subsets. Instead, we propose the following

backward elimination strategy:

1. Start with the setHN0 of all observation trajectories retained after applying the MAT based criterion.
2. For each trajectory j 2 HN0 , calculate the total divergence of the trajectories in the subset HN0;2j

obtained by omitting j from HN0 .
3. Discard trajectories if their omission results in lower total divergence, keep the best N1 trajectories and

restart from step 2.
4. Iterate until only Nfinal5K historical trajectories remain.

The sequence of the numbers N1 > N2 > � � � > Nfinal of trajectories retained after each iteration is a trade-
off between statistical optimality and computational efficiency. Ideally, trajectories would be eliminated one
by one, because the marginal CDFs FHst change each time a trajectory is removed. However, due to the com-
putational cost for calculating the integrals in (5), reduction of the current set of trajectories by much more
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than one may be required. In the data example discussed in sections 5 and 6, we use K 5 60 and the
sequence 420, 340, 270, 210, 160, 120, 90, 70, 60, which reduces the original N0 to the desired K trajectories
in nine iterations. Formulae for efficient computation of the integrals in (5) can be derived based on certain
representations of the divergence given in Br€ocker [2012], and are provided in Appendix A. Since the idea of
minimizing the divergence between the marginal distributions of the historical observations and those of
the postprocessed predictive distributions is the core of our algorithm, we refer to this approach as Mini-
mum Divergence Schaake shuffle (MDSS).

5. Verification of the Postprocessed Meteorological Forcings

We now apply the marginal and multivariate calibration techniques presented in sections 3 and 4 to the
GEFS reforecast data set and the MAT and MAP observations over California described in section 2. In addi-
tion, we apply the Ensemble Copula Coupling (ECC) technique to the same MAT and MAP marginal distribu-
tions. ECC is an another approach to reconstructing the space-time covariability of the postprocessed
ensemble forecasts by reordering samples from the predictive marginal distributions; in contrast to StSS
and MDSS, however, it uses the raw ensemble forecasts instead of historical observations to create multivar-
iate ‘‘dependence templates’’ [Schefzik et al., 2013; Wilks, 2015]. The four river basins are processed separate-
ly. Results for the Russian River basin, which has been at the center of recent research efforts to assess the
viability of forecast informed reservoir operations [Jasperse et al., 2015], are discussed in detail. A detailed
analysis of the three other basins is provided in the supporting information to this paper, and a brief sum-
mary of some key performance metrics for all basins is given in Table 1.

To use the (almost) 26 years during which both reforecast and observation data are available in the most
efficient way, we cross validate these data, leaving 1 year out for verification, fitting our statistical models
with data from the remaining 25 years, and repeating that process for each year so that 26 years worth of
forecasts and independent verifying observations are obtained. A different set of parameters for the univari-
ate postprocessing models for MAT and MAP is fitted for each month, each location, and each lead time.
Training data are composed of forecasts and observations during the 645 days around the 15th of this
month, shifted by the respective lead time. With the cross-validation setting explained above, this amounts
to 25 3 91 days worth of training data, which warrant stable parameter estimates for the CSGD regression
equations (2), (3) even for longer lead times where the signal to noise ratio decreases and the risk of overfit-
ting a complex model increases. A similar cross validation scheme is used for constructing the Schaake shuf-
fle ranks, now using observation data from 1949 to 2009, and leaving out the data from the year that is
currently being verified. This way, the StSS approach can generate K 5 60 forecast trajectories by using just
the forecast initialization date itself (i.e., window size is one). For the MDSS procedure proposed in section 4,
we use again a 91 day time window to define the initial pool of candidate dates, yielding a initial set of 60
3 91 trajectories. This time window could be narrowed if, for example, the forcing ensemble is extended to
lead times on a seasonal time scale, and too much deviation of the historical dates from the forecast date is
undesirable. The ECC approach can generate a number of forecast trajectories that is equal to the number
of members in the raw ensemble or multiples thereof. Two variants are considered here: ECC-Q11 generates
K 5 11 trajectories and uses quantiles (chosen as in section 4) to sample the predictive marginal distribu-
tions, while ECC-R66 generates K 5 66 trajectories in six batches, each constructed by applying the rank
reordering procedure to random samples of size 11. In order to gain insight into the role of K, we also report
some results obtained with K 5 11 StSS and MDSS trajectories.

Earlier studies [Scheuerer and B€uermann, 2014; Hemri et al., 2014; Scheuerer and Hamill, 2015a] have already
shown that the marginal postprocessing techniques employed here yield reliable and skillful forecasts, and
this is confirmed by the reliability diagrams and Brier scores for CSGD postprocessed MAP forecasts provid-
ed as supporting information to this article. Here we focus on multivariate verification and compare the per-
formance of StSS, MDSS, and ECC with regard to reconstructing the spatiotemporal dependence structure
of the forcings, using multivariate proper scoring rules on the one hand, and univariate proper scoring rules
applied to aggregate quantities that are sensitive to space-time covariability on the other hand. Scoring
rules are a quantitative measure of the quality of a probabilistic forecast that takes both reliability and
sharpness into account. Since scores are calculated case by case, they can be averaged over many cases
without requiring any assumption about those cases having the same characteristics (e.g., same correlation
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between locations A and B whatever the state of atmosphere). Specifically, we use the continuous ranked
probability skill score (CRPSS) for univariate quantities and the energy skill score (ESS) and variogram skill
score (VSS) for multivariate quantities. Definitions and details about these verification metrics are given in
Appendix B. Climatological reference forecasts are obtained by building ensembles of climatological trajec-
tories, separately for each month, using observation data from all days of this month (shifted by the respec-
tive forecast lead time) and all years from 1985 to 2010. We focus on results for winter, spring, and fall,
because summers in California are usually very dry, numerical weather prediction is often unable to outper-
form a climatological, near-zero forecast, and representing the space-time structure of MAP is just not an
issue of major importance.

5.1. Verification of Temporally and Spatially Upscaled MAT and MAP
One way of evaluating the statistical properties of a multivariate probability distribution represented by an
ensemble is to aggregate the multivariate quantity to a set of univariate quantities whose distribution is
sensitive to the spatial and/or temporal dependence structure. For MAT, we aggregate by considering the
mean temperature across all subbasins and across blocks of 3 days. The uncertainty about the resulting spa-
tially and temporally upscaled MATs strongly depends on the space-time covariability of the underlying 6 h
MATs; e.g., averaging temperature trajectories that are either above or below normal for several consecutive
6 h periods yields upscaled MAT ensembles with much higher spread than averaging trajectories where the
6 h MATs alternate between below and above normal and the associated uncertainty partially averages out.
For MAP, we aggregate by averaging over all subbasins and accumulating the original 6 h periods to 72 h
periods. This kind of upscaling is especially relevant in the context of hydrological forecasting, where total
runoff from the entire basin and cumulative precipitation amounts over an extended time period are of
interest. Figure 4 depicts the CRPSSs obtained by verifying the upscaled StSS, MDSS, and ECC ensembles (in
this and all subsequent figures, we show results for ECC-Q11 and the implementation of StSS/MDSS with 60
trajectories) against upscaled observations. For the MAT forecasts, the CRPSSs of StSS and MDSS are almost
indistinguishable; a closer look (see also Table 1) suggests a very small but consistent improvement of
MDSS over StSS. For MAP, on the contrary, that improvement is quite substantial during earlier forecast lead
times; for lead times beyond day seven the CRPSSs of both methods tend to zero, and become more similar.
The converse is true for the comparison between MDSS and ECC: their performance with respect to predict-
ing aggregated MAT and MAP is very similar at earlier forecast lead times, but ECC skill decreases faster
than MDSS skill as the forecast lead time increases. This could be expected since the space-time structure of
MDSS trajectories converges toward the structure of observation trajectories representing climatology,
while the ECC trajectories inherit the multivariate dependence structure from the raw ensemble which typi-
cally has little resemblance with the structure of observed precipitation fields at lead times beyond day 7.
These conclusions are consistent over all months and all four basins (see supporting information to this
paper for the corresponding figures). Table 1 summarizes these results, showing averages of CRPSSs
obtained with the different implementations (StSS/MDSS with K 5 11 and K 5 60, ECC-Q11, and ECC-R66) of
each multivariate postprocessing approach. It is interesting to note that the results for MAT confirm the
conclusions of Wilks [2015] that increasing the number of trajectories that represent the multivariate fore-
cast distribution leads to better forecast skill; in particular, ECC-R66 fares better than ECC-Q11, despite the
additional sampling variability introduced by nonsystematically sampling the marginal forecast distribu-
tions. This is not true, however, for MAP forecasts, where ECC-Q11 often yields better results, especially dur-
ing the dry summers where the sampling variability introduced by ECC-R66 entails forecasts that are
significantly inferior to climatological forecasts. It is also worth noting that for MAP, the skill of MDSS-11 is
comparable to the skill of StSS-60, suggesting that diligent construction of a small number of forecast tra-
jectories can yield an equally good representation of the multivariate forecast distribution as a larger num-
ber of trajectories constructed without preferential selection of the dates that determine the ‘‘dependence
template.’’ Based on the results in this table, we chose to proceed with ECC-Q11 and the K 5 60 implemen-
tation of StSS and MDSS.

5.2. Verification of the Spatial Structure of MAT and MAP Forecast Trajectories
We now take a closer look at the ability of StSS, MDSS, and ECC to generate forecast trajectories of MAT and
MAP with appropriate spatial (i.e., across the different subbasins) structure. Figures 5 and 6 depict ESSs and
VSSs of MAT forecast vectors corresponding to the seven subbasins of the Russian River basin for January,
April, and October, separately for each lead time, but averaged over all cross-validation years and all days of
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the respective month. Forecast skill decreases with lead time, and can be very different across different sea-
sons and different times of the day. ESS differences between the StSS, MDSS, and ECC technique are
extremely small, but as explained in Appendix B this may be due to a lack of sensitivity of the ESS to genu-
inely multivariate properties of the forecasts. The VSS plots, on the contrary, suggest a clear improvement
of MDSS over StSS with respect to the representation of the spatial structure of the forecasts. It may be sur-
prising at first that the skill scores are close to zero or even negative for most lead times, but this is a conse-
quence of the variogram score focusing on the evaluation of forecasts of spatial differences of MAT; unlike
the energy score, it does not reward the forecast trajectories for predicting the correct magnitude of MAT,
and it turns out that GEFS temperature forecasts provide little or no information on spatial MAT differences
at the scale of the basins considered here. This is also likely the reason why ECC, which relies exclusively on
the raw ensemble for information about the space-time structure, fares particularly bad. The MDSS
approach yields forecast trajectories whose spatial structure is of comparable quality as that of climatologi-
cal trajectories, while the StSS procedure degrades the spatial structure of the historical MAT trajectories on
which it is based. For the three other basins (see Figures S15–S17 in the supporting information to this

Figure 4. Continuous ranked probability skill scores of aggregated MAT (average over all subbasins and 72 h forecast periods) and MAP
(average over all subbasins, accumulated to 72 h periods) forecasts over the Russian River basin.
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paper), the situation with respect to spatial MAT differences is even less favorable. A detailed analysis
shows that GEFS forecasts of spatial MAT differences are uncorrelated or even negatively correlated with
observed MAT differences between the respective subbasins, but since univariate postprocessing is
based only on single-location forecast skill, the postprocessed marginal distributions still contain
that erroneous information on spatial differences, and none of the multivariate methods are able to
correct it.

For MAP, where spatial differences are more strongly interlinked with the magnitude of observed/predicted
values, VSSs are much better than for MAT (ESSs are again very similar for all methods and therefore not
shown here). Results shown in Figure 7 confirm previous conclusions that the preferential selection of dates
by the MDSS procedure yields improved MAP trajectories compared to StSS for shorter lead times, with the
degree of improvement varying across seasons and across the four basins (see Figures S18–S20 in the sup-
porting information to this paper). For longer lead times the performance of both methods is comparable.
ECC based trajectories are of poor quality for longer lead times, but are mostly also inferior to MDSS for
shorter lead times, suggesting that the raw ensemble forecasts do not sufficiently represent the spatial
structure of MAP at the scale of the basins considered here.

6. Verification of the Resulting Streamflow Forecasts

We finally study to what extent the improvement of the meteorological forcings translates into improved
streamflow forecasts. To this end, the MAT and MAP ensembles studied in the previous section are now
used as inputs to NOAA’s Community Hydrologic Prediction System (CHPS) [Roe et al., 2010] to generate
streamflow hindcasts for the two headwater basins UKAC1 (Ukiah, Russian River basin) and LAMC1 (Coyote
Dam, Lake Mendocino, Russian River Basin) during the period from 1 January 1985 to 15 September 2010.
For these headwater basins, data of observed, unimpaired flow is available. For UKAC1 we study 1 day aver-
age flow forecasts, for LAMC1, 3 day average flow is considered since this is a reservoir and multiday vol-
umes are more meaningful. Prior to generating streamflow hindcasts in CHPS, a historical set of watershed

Table 1. Average CRPSSs (Over All Lead Times) of Forecasts of Aggregated MAT and MAP, Obtained With Different Implementations of
StSS, MDSS, and ECC

MAT MAP

January April July October January April July October

Russian River
StSS-11 0.273 0.332 0.237 0.382 0.245 0.196 20.038 0.244
MDSS-11 0.274 0.331 0.234 0.378 0.268 0.211 20.014 0.271
ECC-Q11 0.276 0.338 0.235 0.381 0.275 0.215 20.017 0.276
StSS-60 0.288 0.347 0.252 0.397 0.261 0.209 0.000 0.257
MDSS-60 0.295 0.350 0.252 0.399 0.287 0.234 20.001 0.296
ECC-R66 0.282 0.341 0.240 0.386 0.271 0.211 20.198 0.278
Eel River
StSS-11 0.234 0.337 0.272 0.353 0.249 0.200 0.030 0.266
MDSS-11 0.234 0.339 0.274 0.344 0.264 0.209 0.015 0.279
ECC-Q11 0.232 0.344 0.273 0.350 0.267 0.212 0.030 0.284
StSS-60 0.250 0.353 0.290 0.369 0.264 0.212 0.048 0.275
MDSS-60 0.253 0.358 0.291 0.369 0.284 0.232 0.048 0.304
ECC-R66 0.235 0.346 0.275 0.353 0.263 0.206 20.128 0.282
American River
StSS-11 0.320 0.353 0.313 0.362 0.219 0.198 20.014 0.234
MDSS-11 0.318 0.354 0.312 0.360 0.233 0.206 20.007 0.252
ECC-Q11 0.319 0.351 0.312 0.357 0.241 0.208 20.017 0.257
StSS-60 0.332 0.365 0.327 0.373 0.232 0.209 0.002 0.250
MDSS-60 0.335 0.367 0.328 0.375 0.253 0.228 20.018 0.272
ECC-R66 0.323 0.354 0.317 0.360 0.243 0.214 20.096 0.264
Merced River
StSS-11 0.331 0.360 0.277 0.328 0.198 0.164 0.033 0.193
MDSS-11 0.333 0.360 0.272 0.323 0.225 0.190 0.044 0.203
ECC-Q11 0.334 0.360 0.277 0.323 0.233 0.190 0.046 0.214
StSS-60 0.345 0.373 0.291 0.338 0.221 0.184 0.066 0.207
MDSS-60 0.347 0.374 0.289 0.340 0.248 0.214 0.085 0.234
ECC-R66 0.337 0.362 0.280 0.325 0.225 0.192 0.053 0.218
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states (warm states) was created by processing historical forcings through calibrated snow accumulation
and ablation models (SNOW-17) [Anderson, 1973], and soil-moisture accounting models (SAC-SMA) [Burnash
et al., 1973] for the basins of interest. The streamflow hindcasts were then generated by looping through
the hydrology forecast models 1 day at a time. For a given hindcast day, appropriate warm states were
selected from the stored data set. The hydrology models were then forced with the meteorological inputs
described previously resulting in a set of streamflow predictions equal to the number of meteorological
forecast inputs. It is worth pointing out that both SNOW-17 and SAC-SMA models applied in routine fore-
casting operations are calibrated using data in the full record period (1985–2010). It is thus difficult to con-
duct a fully independent verification on streamflow forecasts (as is the case when verifying the
meteorological inputs discussed in section 5). However, the StSS-derived, MDSS-derived, and ECC-Q11-
derived forcing ensembles are run through the same hydrological model system (with parameters
unchanged). As such, it is fair to compare the resulting streamflow hindcasts generated in all three scenarios
with each other, though some care should be taken when interpreting the absolute skill of each set of
streamflow hindcasts separately.

Figure 5. Energy skill scores of MAT forecasts over the Russian River basin.
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The CRPSS curves depicted in Figure 8 show that the improved temporal structure (note that spatial depen-
dence is not a factor here as both UKAC1 and LAMC1 are headwater subbasins) of the MDSS forcing ensem-
bles entails a clear improvement of the hydrological predictions. The ECC forcing ensembles fare better
than the StSS forcing ensembles for shorter lead times but worse for longer lead times, and they are never
better than the MDSS forcing ensembles, thus confirming the conclusion drawn before based on Figure 4.
Clearly, the meteorological input variables are just one component of a hydrological forecast system, and
for larger basins even substantially improved forcings might not have the same beneficial effect on stream-
flow forecasts. The results presented here demonstrate, however, that for some basins the additional com-
plexity that comes with more sophisticated, multivariate calibration methods for the forcing variables can
pay off and improve the overall accuracy of a hydrological forecast system.

7. Discussion

In this article, we have proposed a method for generating forecast trajectories of surface temperature and
precipitation accumulations that have reliable marginal distributions and a physically realistic

Figure 6. Variogram skill scores of MAT forecasts over the Russian River basin.
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Figure 7. Variogram skill scores of MAP forecasts over the Russian River basin.

Figure 8. Continuous ranked probability skill scores of streamflow forecasts at Ukiah and Lake Mendocino.
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spatiotemporal dependence structure. For univariate calibration of the GEFS ensemble predictions used
here, a variant of the nonhomogeneous Gaussian regression approach [Gneiting et al., 2005] was employed
while precipitation forecasts were postprocessed following the approach proposed by Scheuerer and Hamill
[2015b]. These methods have been successfully used in the literature to generate reliable probabilistic fore-
casts based on the output of a global ensemble forecast system, but other approaches are available and
could be used just as well for univariate calibration.

The main focus of this paper was to address the more difficult problem of modeling the joint distributions
across the two variables, different subbasins, and a range of lead times. The Schaake shuffle [Clark et al.,
2004] addresses this issue by using historical, observed trajectories as a ‘‘dependence template’’ and remap-
ping the observed values to those derived from the marginal forecast distributions. To reduce the degrada-
tion of spatial and temporal gradients that can result from this remapping, we suggested a variant of the
Schaake shuffle that aims at selecting the historical dates in such a way that the corresponding trajectories
have marginal distributions that resemble the forecast distributions to which they are mapped. Our compar-
ison of the standard Schaake shuffle (StSS) with this new variant (MDSS) focused on the spatial and tempo-
ral structure of the resulting forecast trajectories, and the results obtained for four river basins in California
suggest that MDSS can indeed help generate trajectories with a physically more realistic structure. Covari-
ability between the two forcing variables is addressed by simply using the same historical dates, but since
the StSS and MDSS do not differ in that regard, verification of this intervariable dependence was omitted in
our study. The forcing ensembles generated by StSS and MDSS, respectively, were used as input to a hydro-
logical forecast system, and verification of the resulting streamflow ensemble forecasts confirmed the bene-
fit of the improved multivariate structure obtained with MDSS.

Can the MDSS technique always improve upon the StSS? The biggest caveat about presumably any strategy
for preferential selection of historical dates concerns the dimension of the multivariate distribution that is
to be constructed. In the setup considered here, specifically, the Russian River basin, the dimension of that
distribution was 840 (2 variables, 7 subbasins, 60 forecast lead times), which is pretty large already, but was
feasible owing to a 61 year record of historical observations. For large basins with many more subbasins,
this dimension would be much bigger which would not only increase the computational cost of the MDSS
procedure dramatically, it would also make it harder and harder to find a set of historical trajectories with
the desired marginal distributions. By construction, the MDSS should never perform significantly worse
than the StSS, but for large basins its potential benefit is likely very small. Moreover, we have seen that the
improvement of MDSS over StSS for constructing MAT trajectories is rather limited when verifying the quali-
ty of spatially and temporally upscaled forecasts. In some settings the representation of spatial differences
by MDSS based trajectories was much better, while in other cases none of the multivariate techniques was
able to correct misrepresentations of spatial properties inherited from the raw ensemble forecasts.

The Schaake shuffle is not the only approach for modeling joint forecast distributions, but there are good rea-
sons why it has been the predominant approach in the context of hydrological forecasts. While Gaussian copu-
las [Genest and Favre, 2007; Sch€olzel and Friederichs, 2008; M€oller et al., 2013] have been used successfully for
modeling multivariate forecast distributions, the highly non-Gaussian, nonstationary, and spatially and tempo-
rally intermittent nature of precipitation makes them a suboptimal choice in hydrological forecast settings.
Another discrete copula approach, ensemble copula coupling, has previously been used in the context of pre-
cipitation forecasting [Roulin and Vannitsem, 2012; Flowerdew, 2014] and was considered as a comparison
method. Shortcomings of this approach found in the setup considered here were attributed to the fact that
global ensemble forecast systems are typically unable to resolve the fine scale structure of precipitation and
temperature fields, and for longer lead times (where significant displacement and timing errors are common)
the structure of the raw ensemble forecast fields can be very different from the observed structure. The MDSS
technique, on the contrary, is based on observations which have the desired spatial and temporal resolution.
In contrast to the standard Schaake shuffle, it leverages real-time forecast information, and uses it to inform
the choice of historical trajectories, thus combining the advantages of ECC with those of the standard Schaake
shuffle and outperforming both of them. Our technique can be applied beyond the postprocessing of meteo-
rological forcings, e.g., in a setting where streamflow forecasts themselves are postprocessed as in [Hemri et al.,
2015], or in entirely different applications such as wind energy forecasting where forecast trajectories of wind
power are required for decision-making [Pinson, 2013]. Different applications clearly entail different trade-offs
concerning the advantages and disadvantages of the various multivariate modeling techniques, but we feel
that the method proposed here is a valuable contribution to the modeling toolbox.
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Appendix A: Computationally Efficient Calculation of the Divergence

The algorithm proposed in section 4 requires repeated evaluation of the integrals in equation (5), and it is
crucial that this calculation is done efficiently to keep computational costs at a reasonable level. To simplify
the notation, we consider a fixed location s and lead time t, and drop the corresponding subscripts from
the notation. Denoting by Scrp the continuous ranked probability score (CRPS, see Appendix B) and defining

ScrpðFH; Ff Þ5
ð

ScrpðFH; xÞ dFf ðxÞ

the divergence integral can be expressed as [Br€ocker, 2012]:

DH5

ð
ðFHðxÞ2Ff ðxÞÞ2dx 5 ScrpðFH; Ff Þ2ScrpðFf ; Ff Þ

In our algorithm, DH needs to be evaluated for different choices of H while Ff is fixed, so the second term
is a constant and can be omitted. Let x1; . . . ; xK be a sample that represents the forecast distribution Ff and
y1; . . . ; yN the observation sample corresponding to the set HN . Assume that both samples are in increasing
order. Using the CRPS representation in Br€ocker [2012] and defining aj : 5

j20:5
N ; j 2 HN , the first term in the

above equation can be expressed as

ScrpðFH; Ff Þ ¼ 1
K

XK

i¼1

ScrpðFH; xiÞ

¼ 2
KN

XK

i¼1

XN

j¼1

ajðxi2yjÞþ þ ð12ajÞðyj2xiÞþ

¼ 2
N

XN

j¼1

aj
1
K

XK

i¼1

ðxi2yjÞþ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: e2
j

þð12ajÞ
1
K

XK

i¼1

ðyj2xiÞþ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: eþj

(A1)

The algorithm in section 4 requires, for a given set HN , the calculation of the divergence for all ðN21Þ-sub-
sets of HN . The fastest way to do that is to precompute and store e2

j and e1
j for all j 2 HN . Then, for every

j 2 HN

1. define aj0 : 5
j020:5
N21 ; j051; . . . ;N21;

2. compute the outer sum in equation (A.1) over j0 2 HN n fjg, using these aj0

3. since e2
j0 and e1

j0 have been precomputed, the inner sums are only calculated once

Computation time can be further reduced by defining and storing ed
j : 5e2

j 2e1
j ; j 2 HN , and rewriting

equation (A1) as

ScrpðFH; Ff Þ5 2
N

XN

j51

e1
j 1

2
N

XN

j51

aje
d
j

This is an advantage when we consider the additional summation over s and t

X
s;t

ScrpðFHst ; Ff
stÞ5

2
N

X
s;t

XN

j51

e1
j ðs; tÞ1 2

N

X
s;t

XN

j51

aje
d
j ðs; tÞ

The requirement that each subsample fyj0 ðs; tÞ : j0 2 HN n fjgg is in ascending order prevents any simplifica-
tions or precalculations of the second term, due to the multiplication with the coefficients aj which rely on
that ordering. In the first term, however, those coefficients are missing, rendering the ordering assumption
unnecessary, and allowing one to interchange the two sums, precompute

P
s;t e1

j ðs; tÞ, and just omit the
respective term that corresponds to the left-out j 2 HN from the summation over the elements inHN n fjg.

Appendix B: Verification Metrics Used in This Paper

B.1. Continuous Ranked Probability Score
The continuous ranked probability score (CRPS) is a popular measure for the overall skill of a probabilistic fore-
cast of a univariate quantity. Given a forecast CDF F and a verifying observation y, the CRPS is defined as
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ScrpðF; yÞ5
ð
ðFðxÞ21½y;1ÞðxÞÞ2dx

where 1½y;1ÞðxÞ is the indicator function that is 1 if x � y and 0 otherwise. It is a negatively oriented (i.e.,
lower is better), strictly proper score which evaluates both reliability and sharpness of F as a forecast of y.
Being ‘‘strictly proper’’ ensures that a forecaster who knows and issues the true conditional distribution of y
attains a better score on average than any forecaster who issues a different distribution. Gneiting and Raftery
[2007] provide a general discussion of (strictly) proper scoring rules and show that the CRPS can be repre-
sented as

ScrpðF; yÞ5EF jX2yj2 1
2

EF jX2X 0j (B1)

where X and X 0 are independent random variables with CDF F, and EF denotes the expectation under F.

B.2. Energy Score
Representation (B.1) of the CRPS is the starting point of its generalization to multivariate quantities. For an
observation vector y5ðy1; . . . ; ydÞt and independent random vectors X5ðX1; . . . ; XdÞt and X05ðX 01; . . . ; X 0dÞ

t ,
representing a d-variate distribution F, the energy score is defined as

SenðF; yÞ5EFkX2yk2 1
2

EFkX2X0k (B2)

where jj � jj denotes the Euclidean norm. The energy score (ES) is a strictly proper score for multivariate
quantities [Gneiting and Raftery, 2007].

B.3. Variogram Score
In spite of being strictly proper, the ES has been found to be rather insensitive to misspecification of the cor-
relation structure of the multivariate quantities. That is, if F is the true distribution and G is a forecast distri-
bution with the same marginal distributions but different correlation structure than F, the systematic
difference between SenðF; yÞ and SenðG; yÞ is often too small to detect the misspecification. Scheuerer and
Hamill [2015b] therefore suggested an alternative score which compares forecast and observed discrete
spatial/temporal differences of the multivariate quantity, and weighs these differences before combining
them into a single score

Scp
ðF; yÞ5

Xd

i;j51

wijðjyi2yjjp2EF jXi2XjjpÞ2 (B3)

which is referred to as variogram score of order p (VS-p). In this paper we set p 5 0.5, which Scheuerer and
Hamill [2015b] and other studies found to be a choice with favorable sampling properties. We use the VS-
0.5 in a setting where the components of y and X correspond to spatial locations, and we choose wij � 1
since the basins considered here are relatively small and spatial dependence is typically strong among all
locations. The VS-0.5 is usually better than the ES in distinguishing forecast distributions that differ only in
their dependence structure. It is proper but not strictly proper, which implies that the ‘‘best’’ forecaster
should never fare worse than any competitor, but it can happen that a different forecaster attains the exact
same score despite issuing forecasts that are inferior in certain aspects of the forecast to which the VS-0.5 is
simply not sensitive.

B.4. Skill Scores
Skill scores are a way to put scores into context and make them more interpretable by relating them to a
reference score. Specifically, let S? be any proper score (like those discussed above), Sref a reference score to
compare against, and denote by S? and Sref the respective average scores over a sufficiently large number
of cases. Then the skill score corresponding to S? is defined as

S?5
Sref 2S?

Sref

A perfect forecast has a skill score of 1, while a skill score of 0 indicates that the forecast is only as good as
the reference forecast, and a negative skill score suggests that the forecast performance is inferior to the
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reference. The standard reference forecast is a climatological forecast, which should be location specific and
take seasonal variations into account, but does not depend on the particular state of the atmosphere.
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